

Zwick Materials Testing

Testing Machines and Systems for textile materials

FP 295 2.0702.202

The Zwick Roell AG – More than a century of experience in materials testing

Mechanical-technological testing is the oldest discipline of materials testing. As early as in the 15th and 16th century, Leonardo da Vinci and Galileo Galilei were already considering the flexural stressing and the elastic behaviour of materials. In the course of time further knowledge was obtained. In the middle of the 18th century the first testing machines finally appeared in France.

Since the middle of the 19th century the company Amsler (formerly in Schaffhausen, Switzerland) has been involved in materials testing and the company Roell & Korthaus since 1920. Since 1937 Zwick has been building devices, machines and systems for mechanicaltechnological materials testing. Long before that time, i.e. in 1876, Prof. Seger had already founded a chemical laboratory as a scientifictechnological consulting company for the industry of nonmetallic minerals. During the 20th century, the present company Toni Technik has developed from these funda-

Haedquarders of Zwick Roell AG and Zwick GmbH & Co. at Ulm, Germany

mentals and is now considered a leading expert for test systems for building materials. Excellent performances were also supplied by the company MFL (Mohr & Federhaff) – a company that was founded in 1870. By the way, Carl Benz was one of the employees. Since 1992, these companies have formed the Zwick/Roell company group. In the next two years to follow, the companies Dartec, Rosand, Kelsey and Indentec in Great Britain joined the group.

List of Contents

he Zwick Roell AG	2
extile materials application range and characteristic features	3
standards and testing machines	
Naterials testing machines	
Examples of applications	14
Variants	18
Examples of applications Variants Loadframes	20
Drive systems	21
Load cells	22
Testing software <i>testXpert</i> [®] Specimen grips Extensometers	22
Specimen grips	25
Extensometers	28
Testing in hot and cool conditions	31
Special testing machines and systems	33
Addernization	33
ervices	35
ddresses	
Photos front cover: Pyramid type roof: HOCHTIEE - Heat protection: Tempex GmbH - Airbag: Volkswage	en AG

In July 2001, the Zwick Roell company group was converted into a stock corporation: the Zwick Roell AG. Part of this stock corporation are the companies Zwick, Roell Amsler, Toni Technik, Indentec Ltd. and Acmel Labo. These companies supply an extensive program for materials, component, and functional tests - from the manually operated hardness tester up to a complex test system for the process-accompanying application.

Zwick has many years of experience, combined with a multitude of supplied systems. This experience is continuously supplemented by the constant communication with the users. On this solid basis, the company supplies a wide range of high-performance products - from the economical standard machine up to special versions and designs for special test jobs. Modern mechanics, high-performance electronics and the applicationoriented software are the prereguisite for the versatility and the high "intelligence" of these modern testing machines and systems.

However, the services of the Zwick Roell AG go far beyond the supply of products. Already in 1994 the company received the certification according to DIN EN ISO 9001 and thus guarantees a consistently high product and service quality. With accredited DKD¹⁾- resp. UKAS²⁾calibration laboratories, the companies of the Zwick Roell AG are in addition entitled to verify and to calibrate test systems and to document that with internationally recognized certificates.

This catalogue provides an overview of devices, machines, and systems of the Zwick Roell AG for the use in the textile industry and in the corresponding research and test institutes and training centers. This is only a part of the extensive overall program of the Zwick Roell AG.

¹⁾ DKD: Deutscher Kalibrier-Dienst

(German Calibration Service) ²⁾ UKAS: United Kingdom

Accreditation Service

Textile materials application range and characteristic features

Textiles have been accompanying man since thousands of years. Already in 5000 B.C. cloths were woven in Egypt. For this purpose the people used natural raw materials such as cotton, flax fibres, animal hair and silk threads. The people used them as garments and as protection from the cold. As textiles for the home, they made living and work rooms look nicer. can be waterproof, impermeable Modern textiles, however, are hightech products that do not have very much in common any more with these basic functions. In specific material compositions they offer qualities we did not dare dreaming of a few decades ago. Here are a few examples: As garments they can be waterproof, impermeable and breathable at the same time, they can have warmth-giving- and warmth-regulating and recovering qualities (so that e.g. a crease stays unharmed even after washing and dry-cleaning) or they can have tearproof qualities. As safety clothing they protect the wearer against heat and flames, dangerous tools as for example chain saws and even against shots from small arms. In conveyor belts and tires they are used as reinforcement. As climbing ropes they are light and have high strength, at the same time they are elastic to control the

Cloth test, stone relief from Hirzweiler, 2nd/3rd century AD, Trier, Rheinisches Landesmuseum (museum at Trier, Germany)

energy of fall. In form of safety belts they should only show a permanent deformation to avoid injuries caused by an elastic resilience. For kites, paragliders, and parachutes they must have a minimum weight and they must at the same time be extremely light and wind-tight. For ship ropes, the light and waterrepellent, floatable version is required.

An example of the variety of different requirements are geotextiles which are used for many jobs in road and railway construction as well as for bank stabilization and coastal fortifications. Essential functions here consist of

- the separation of different material layers as e.g. sand and gravels
- the taking up of forces that cannot be transmitted to other elements

 the filtration and drainage whenever those geotextiles are used instead of mineral filters

As different as the fields of application are also the demands on the long-term behavior of textiles. If they are for example used for permanent wear they must be unrottable and without nutritional value for insects, rodents etc. If it is however only a question of a temporarily limited soil stabilization for cultivation, they should have a longer rotting time as soon as the roots of the plants have taken over the stabilization job.

According to the application in question, textiles must have specific properties. Part of this are their resistance to different materials, radiations, temperature influences, and other environmental conditions as well as their mechanical resistance. The multitude of applications and the high demands on these textiles require – particularly in the field of research and development – sophisticated testing possibilities. With a large range of testing machines, modern test software and a large range of accessories the Zwick/Roell Group offers a variety of possibilities for a specific, high-precision testing of these geotextiles with exactly reproducible results.

Modern materials testing machine for the testing of textile materials

Standards and Testing machines

Contents	Test standard	Test means/Test device Page
1 General basics		
Test devices: Construction, test device's t	est, accuracies, environmenta	l requirements
Tensile, compression, flexure test machines	ISO 7500-1, ISO 379, ASTM	
	D 76, ASTM E 4, EN 10002-4,	
	ISO 9283, DIN 51220	
Normal climate for conditioning and testing	ISO 139, EN 20139,	
	ASTM D 1776, EN ISO 2231	
Sampling and preparation		
Fibers, yarns and textile fabrics	EN 12751	
yarns	ASTM D 2258	
2 Textile physical test methods for fibers a	and filamonte	
Fiber length		
Single fiber measurement method	DIN 53808-1, ISO 6989,	Auxiliary means to test standards
Single liber measurement method	ASTM D 5103	Advinary means to test standards
Cotton, comb staple method,	DIN 53806	comb sorter
Cotton, gauge length and uniformity factor	DIN 53944	Auxiliary means to test standards
Wool, comb staple method,	ISO 920, ASTM D 519	comb sorter
Fiber resp. filament fineness and diameter		
Fiber fineness	EN ISO 1973, ASTM D 1577	Fiber fineness measurement device
Mono-filament fineness	EN 13392	Yarn reel or scale
Fiber diameter in micro-projection	DIN 53811	Microscope with scale
Fiber or filament strength		
Spun fibers, tensile tests	EN ISO 5079, ASTM D 3822	Fiber strength test device
Spun fibers, loop tensile test	DIN 53843-2, ASTM D 3217	Fiber strength test device
Cotton fibers, bundle strength	ISO 3060, ASTM D 1445	Bundle strength tester
Wool fiber bundle, tensile test at a	ASTM D 1294	Bundle strength tester
grip to grip separation of 1 inch (25,4 mm)		
Wool fiber bundle, tensile test at a grip to grip	ASTM D 2524	Bundle strength tester
separation of 1/8th of an inch (3,2 mm)		
Monofilament, tensile test	EN 13895	Materials testing machine 18
Shrink behaviour		
Monofilament, warm shrink behaviour	EN 13844	Heat shrink chamber
Commercial mass		
Bast fibers and hard fibers	DIN 53826	Auxiliary means to test standards

Contents	Test standard	Test means/Test device Page
B Textile physical test methods for fiber tap	es and threads	
Non-uniformity		
Capacitive measurement method	DIN 53817-2	Uster Tester
iber fineness and mass		
farns, short length method	DIN 53830-3, ISO 7211-5,	Auxiliary means to test standards
ASTM D 1059		
/arns, skein method	EN ISO 2060	Yarn reel
Elasto-yarn, short length method	DIN 53830-4	Auxiliary means to test standards
Cotton yarn, commercial mass and fineness	DIN 53824	Auxiliary means to test standards
Norsted yarn, commercial mass and fineness	DIN 53823	Auxiliary means to test standards
Bast and hard fiber yarns, commercial mass and fineness	DIN 53825	Auxiliary means to test standards
Fiber twist		
/arn, direct count method	EN ISO 2061, ISO 7211-4, ASTM D 1423	Yarn twist tester
/arns, untwist-retwist method	ISO/DIS 17202, ASTM D 1422	Yarn twist tester
iber strength	AUTIVI D 1422	
/arn, tensile strength	EN ISO 2062, ASTM 2256	Materials testing machine 18
farns and threads, tensile tests in	DIN 53834-2	Materials testing machine 18
oven dried state		
/arn strands, tensile tests	ISO 6939, ASTM D 1578	Materials testing machine 18
farns and threads, knot tensile test	DIN 53842-1	Materials testing machine 18
arns, loop tensile tests	DIN 53843-1	Materials testing machine 18
ensile elastic behaviour		
farns and threads from elasto-fibers, multiple	DIN 53835-2	Materials testing machine 18
tensile loading between constant strain limits		
farns and threads, once-off tensile loading	DIN 53835-3	Materials testing machine 18
between constant strain limits		
farns and threads, once-off tensile loading	DIN 53835-4	Materials testing machine 18
between constant force limits		
Elastomer fibers, remaining deformation	ASTM D 3106	Materials testing machine 18
Crimp		
Fextured filament yarns up to 500 dtex	DIN 53840-1	Reel, heating chamber
	Extension measurement device	
Textured filament yarns above 500 dtex	DIN 53840-2	Reel, heating chamber
	Extension measurement device	
Shrink behaviour		
Single and plied yarns, shrink behaviour in water	DIN 53866-2	Auxiliary means to test standards
farns and threads, shrink behaviour in hot air	DIN 53866-3	Auxiliary means to test standards
Single and plied yarns, shrink behaviour in steam	DIN 53866-4	Auxiliary means to test standards
arns and threads, shrink behaviour in	DIN 53866-12	Auxiliary means to test standards
gaseous and liquid mediums		-
arns, shrink behaviour in boiling water,	ASTM D 2259	Auxiliary means to test standards
steam or under dry heat		
iber friction		
arn, friction of yarn to solid material	ASTM D 3108	Auxiliary means to test standards
Yarn, friction yarn to yarn	ASTM D 3412	Auxiliary means to test standards

Contents	Test standard	Test means/Test device Page
4 Textile physical test methods for textile fa		
Construction characteristics (mass proporti		r density)
Fabric, mass proportion of warp and weft	DIN 53856, ISO 7211-6	Auxiliary means to test standards
Fabric, fiber density	EN 1049-2, ISO 7211-2,	Auxiliary means to test standards
	ASTM D 3775	,
Fabrics and knitted fabrics, yarn length ratios	DIN 53852	Auxiliary means to test standards
Knitted fabrics, number of meshes	DIN 53883	Auxiliary means to test standards
Area mass, width and length		,
Fabric, area mass	ASTM D 3776	Auxiliary means to test standards
Textile fabrics (excepting non-wovens)	ISO 3801, EN 12127	Auxiliary means to test standards
area mass		,
Non-wovens, area mass	EN 29073-1, ISO 9073-1	Auxiliary means to test standards
Textile fabrics, width and length	EN 1773	Auxiliary means to test standards
Thickness and compressibility		
Textile fabrics (excepting non-wovens), thickness	EN ISO 5084	Thickness gauge
Non-wovens, thickness	EN ISO 9073-2	Thickness gauge
Non-wovens, thickness	ASTM D 1777	Thickness gauge
Highloft non-wovens, thickness	ASTM D 5736	5 5
Textile fabrics, compressibility	DIN 53885	Thickness gauge
Strip tests		5 5
Textile fabrics (excepting non-wovens)	EN ISO 13934-1	Materials testing machine 18
strip tests		0
Non-wovens, strip tensile tests	EN 29073-3, ISO 9073-3	Materials testing machine 18
Textile fabrics, grab tensile test	EN ISO 13934-2	Materials testing machine 18
Textile fabrics, strip tensile tests and	ASTM D 1682, M&S P11	Materials testing machine 18
grab tensile test, normal climate		0
Textile fabrics, wet strip tensile tests	ASTM D 5035	Materials testing machine 18
Textile fabrics, wet grab tensile test	ASTM D 5034	Materials testing machine 18
Textile fabrics, strip tensile tests on seams	EN ISO 13935-1	Materials testing machine 18
Textile fabrics, grab tensile tests on seams	EN ISO 13935-2	Materials testing machine 18
Burst test		
Hydraulic method	EN ISO 13938-1	Burst pressure tester
Pneumatic method	EN ISO 13938-2	Burst pressure tester
Permeability		
Textile fabrics	EN ISO 9237	Permeability tester
Abrasion and pilling test method		
Pill behaviour, pilling test box	EN ISO 12945-1	ICI Pilling box
Pill behaviour, Martindale method	EN ISO 12945-2	Martindale abrasion tester
Pill behaviour, random-tumble method	DIN 53867	Random-Tumble pilling tester
Abrasive strength, Martindale method,	EN ISO 12947-2	Martindale abrasion tester
specimen destruction		
Abrasive strength, Martindale method,	EN ISO 12947-3	Martindale abrasion tester
mass loss		

Contents	Test standard	Test means/Test device	Page
Abrasive strength, Martindale method,	EN ISO 12947-4	Martindale abrasion tester	
surface changes			
Abrasive strength, rotary abrasion test	DIN 53863-2	Schopper or Frank-Hauser	
		abrasion tester	
Knitted footwear, abrasive resistance	EN 13770	Martindale abrasion tester	
Displacement strength			
Fabric, displacement resistance	DIN 53934	Materials testing machine	18
Displacement resistance of yarns in fabrics,	EN ISO 13936-1	Materials testing machine	18
method with a fixed seam opening			
Displacement resistance of yarns in fabrics,	EN ISO 13936-2	Materials testing machine	18
method with set force			
Seam slippage resistance	DIN 53868	Materials testing machine	18
Seam slippage strength	ASTM D 434, M&S P12	Materials testing machine	18
Tear growth and stitch tear out behaviour			
Textile fabrics, Elmendorf tear growth test	EN ISO 13937-1,	Elmendorf tester	
	ASTM D 1424		
Non-wovens, Elmendorf tear growth test	ASTM D 5734	Elmendorf tester	
Textile fabrics, leg tear growth test	EN ISO 13937-2,	Materials testing machine	18
	ASTM D 2261	C C	
Non-wovens, leg tear growth tests	DIN 53859-4	Materials testing machine	18
Textile fabrics, wing tear growth tests	EN ISO 13937-3	Materials testing machine	18
Textile fabrics, tongue tear growth tests	EN ISO 13937-4	Materials testing machine	18
Non-wovens, tongue tear growth tests	ASTM D 5735	Materials testing machine	18
Textile fabrics (excepting non-wovens)	DIN 53859-5, ASTM D 5587	Materials testing machine	18
trapezoidal tear growth test			10
Non-wovens, trapeze tear growth tests	EN ISO 9073-4,	Materials testing machine	18
	ASTM D 5733		
Tensile, elastic behaviour			
Textile fabrics (excepting knitted fabrics), once-off	DIN 53835-13	Materials testing machine	18
loading between constants strain limits		Matchale tooting machine	10
Knitted fabrics, once-off loading between	DIN 53835-14	Materials testing machine	18
two force limits		Wateriale teeting maerine	10
Elastic fabric, tensile stress and strain	ASTM D 4964	Materials testing machine	18
Elastic fabrics, -tapes, tensibility and modul	Marks & Spencer, P14	Materials testing machine	18
Stretch ware, elongation, modul and	Marks & Spencer, P15	Materials testing machine	18
remaining elongation	Marks & Opencer, 1-10		10
Special seam tests			
Fabrics, failure of seams	ASTM D 1683	Materials testing machine	18
Stiffness and crease recovery	ASTIVID 1003	Materials testing machine	10
Textile fabrics (excepting non-wovens)	DIN 53362	Cantilever tester	
flexural strength, cantilever method			
0		Contilover tester	
Non-wovens, flexural strength, cantilever method	EN ISO 9073-7	Cantilever tester	
Flexural strength, Schlenker method	DIN 53364	Schlenker flexural stiffness	
		tester	
Fabrics, crease recovery capability of air dried	EN 22313, ISO 2313	Auxiliary means to test stand	ards
specimen with horizontal crease edges and			
hanging free leg			

Contents	Test standard	Test means/Test device	Page
Textile fabrics, crease recovery capability	DIN 53891-2	Auxiliary means to test standa	ards
on wet specimen with vertical crease edge			
Adhesion tests			
Delamination of fusible interlinings from upper fab	prics DIN 54310	Materials testing machine	18
Textile-Elastomer bondings, adhesion	ISO 36	Materials testing machine	18
Adhesion tests on bonded fabric plies	ASTM D 413	Materials testing machine	18
Other special test methods for fabrics and	l knitted fabrics		
Bulging tendency, elbow test	DIN 53860-1	Auxiliary means to test standa	ards
Knitted fabrics, capability of being sewn	DIN 53882	Sewing machines	
Eabrics, change in tensile force by	DIN 54283	Materials testing system	
retained chlorine			
Other special test methods for non-woven	IS		
Standard test methods	ASTM D 1117	Materials testing machine a. c	o. 18
Non-wovens for medicinal compresses	EN 1644-1	Materials testing machine a. c	o. 18
Drape coefficient	EN ISO 9073-9	Materials testing machine	18
Fiber migration	DIN 53865	Materials testing machine	18
Needle tearing out force	DIN 54301	Materials testing machine	18
Compression elastic behaviour	DIN 54305	Materials testing machine	18
5 Textile physical test method for special	product groups, inclusive	e of textile related products	
Furniture materials			
Vinimum requirements and tests	DIN V 61010	Materials testing machine a. c	o. 18
Floor coverings			
Pile carpets, mass of pile per unit area,	DIN 54325	Auxiliary means to test standa	ards
thickness and density			
Floor coverings, thickness	DIN 53855-3	Thickness gauge	
Textile floor coverings, wear	DIN 54323-1	Test drum	
Textile floor coverings, penetration behaviour	DIN 54316	Thickness gauge	
Textile floor coverings, change in appearance	DIN 54328	Auxiliary means to test standa	ards
Reinforcement textiles			
High modulus fibers, tensile tests	ASTM D 3379	Materials testing machine	18
Para-aramid filament yarns	EN 12562	Materials testing machine	18
Para-aramid fiber filament yarns	EN 13003-2	Materials testing machine	18
Carbon filament yarns	EN 13002-2	Materials testing machine	18
Carbon fiber yarns, tensile behaviour of	EN ISO 10618	Materials testing machine	18
a resin impregnated yarn			
Carbon and graphite yarns, ropes,	ASTM D 4018	Materials testing machine	18
rovings and cable, tensile test			
Reinforcement yarns for plastics, tensile test	DIN 65382	Materials testing machine	18
Reinforcement yarns, fineness	EN ISO 1889	Materials testing machine	18
Reinforcement yarns, rotation	EN ISO 1890	Yarn twist tester	
Tyre cord, tyre cord fabric and technical	ASTM D 885	Materials testing machine	18
filament yarns			
yarns and fabrics for support structures	ASTM D 5446	Materials testing machine	18
of inflatable objects		_	
Mats and fabrics, area mass	ISO 3374	Auxiliary means to test standa	ards

Contents	Test standard	Test means/Test device	Page
Textile glass products			1 4 9 0
Textile glass yarns	EN 12654-2	Standard requirements	
Textile glass yarns, cut	EN 12971-2	Standard requirements	
Textile glass yarns, tensile test	ISO 3341	Materials testing machine	18
Glass threads, yarn and rovings for	ASTM D 2343	Materials testing machine	18
reinforced plastics, tensile test		C C	
Textile glass rovings	EN 14020-2	Materials testing machine	18
Textile glass rovings, manufacture of test pieces	EN ISO 9163	Materials testing machine	18
and tensile tests on impregnated rovings			
Textile glass fabric, thickness	ISO 4603	Auxiliary means to test standa	ırds
Textile glass mats, thickness and recovery capability	ISO 3616	Auxiliary means to test standa	ırds
Textile glass fabric, tensile test	ISO 4606	Materials testing machine	18
Textile glass mats, tensile test	ISO 3342	Materials testing machine	18
Coated textiles			
Standard test methods	ASTM D 751	Materials testing machine a. c	. 18
Coated and laminated fabrics for	ASTM D 4851	Materials testing machine	18
use in roofing systems			
Bonded, fused and laminated apparel materials	ASTM D 2724	Materials testing machine	18
Flexural strength, cantilever method	DIN 53362	Cantilever tester	
Tensile test	EN ISO 1421	Materials testing machine	18
Elmendorf tear growth tests	EN ISO 4674-2	Elmendorf tester	
Trapezoid tear growth test	EN 1875-3	Materials testing machine	18
Tongue and leg tear growth tests	EN ISO 4674-1	Materials testing machine	18
Tongue tear growth test	DIN 53356	Materials testing machine	18
Block resistance	EN 25978, ISO 5978	Auxiliary means to test standa	ırds
Adhesive strength of coatings	EN ISO 2411	Materials testing machine	18
Adhesion capability between rubber and fabrics	ISO 4637	Materials testing machine	18
Burst test, steel bal and hydraulic method	ISO 3303	Materials testing machine (Me	th. A) 18
Burst test, steel ball method	DIN EN 12332-1	Burst pressure tester	
Burst test, hydraulic method	DIN EN 12332-2	Burst pressure tester	
Flexure tests at low temperatures	ISO 4675, ASTM D 2136	Auxiliary means to test standa	ırds
Geo-plastics			
Geo-textiles, sampling	EN 963, ISO 9862,		
	ASTM D 4354		
Geo-textiles, area mass	EN 965, ISO 9864,	Auxiliary means to test standa	irds
	ASTM D 5261		
Geo-textiles, thickness, single layers	EN 964-1, ISO 9863	Thickness gauge	
Geo-textiles, layer thickness of multi-layer products	EN ISO 9863-2	Thickness gauge	
Geo-textiles, tensile tests on wide strips	EN ISO 10319, ASTM D 4595	Materials testing machine	18
Geo-textiles, tensile tests	ASTM D 4632	Materials testing machine	18
Geo-textiles, tensile tests on joinings/seams	EN ISO 10321, ASTM D 4884	Materials testing machine	18
Geo-textiles, geo-cells, connection point strength	EN ISO 13426-1	Materials testing machine	18
Geo-textiles, die penetration test	EN ISO 12236	Materials testing machine	18
Geo-textiles, tensile creep	EN ISO 13431, ASTM D 5262	Creep tester	
Geo-textiles, compression creep	ENV 1897, prEN 1897	Creep tester	

Contents	Test standard	Test means/Test device	Page
Geo-textiles, tear growth test, trapeze method	ASTM D 4533	Materials testing machine	18
Geo-textiles, pyramid drop test	DIN V 60500-1	Pyramid drop tester	
Geo-textiles, cone drop test	EN 918, ISO/DIS 13433	Cone drop tester	
Geo-textiles, abrasion behaviour	EN ISO 13427	Abrasion tester	
Geo-synthetic sealing sheets, tensile tests	ASTM D 4885	Materials testing machine	18
on wide strips		-	
Geo-synthetic sealing sheets, tensile tests	ASTM D 5397	Materials testing machine	18
on notched specimen			
Geo-synthetic sealing sheets, pyramid	ASTM D 5494	Materials testing machine	18
penetration resistance			
Geo-plastics, burst test	EN 14151	Burst pressure tester	
Geo-plastics, puncture resistance	ASTM D 4833	Materials testing machine	18
Tapes, belting, ropes, cordage			
Narrow elastic fabrics, static load testing	ASTM D 5278	Materials testing machine	18
Flat woven lifting tapes of man-made fibers	EN 1492-1	Materials testing machine	18
Woven tapes of textile glass and	DIN EN 61067-2	Materials testing machine	18
polyester filaments		0	
Textile conveyor belts, tensile test	ISO 283-1	Materials testing machine	18
Textile conveyor belts, adhesion between the	EN ISO 252-1	Materials testing machine	18
layers		<u> </u>	
Mountaineering equipment, tape	EN 565	Materials testing machine	18
Mountaineering equipment, climbing belt	EN 12277	Materials testing machine	18
Mountaineering equipment, rope	EN 564	Materials testing machine	18
Mountaineering equipment, slings	EN 566	Materials testing machine	18
Mountaineering equipment, dynamic climbing ropes		Materials testing machine	18
Safety belt and safety line for	EN 1095	Materials testing machine	
use with sport boats			
Equipment for paragliding, belt fixtures	EN 1651	Materials testing machine	18
Fiber ropes	EN 919, ASTM D 4268	Materials testing machine	18
Fiber ropes, manila and sisal	EN 698	Materials testing machine	18
Fiber ropes, hemp	EN 1261	Materials testing machine	18
Fiber ropes, polyamid	EN 696	Materials testing machine	18
Fiber ropes, polyester	EN 697	Materials testing machine	18
Fiber ropes, polypropylene	EN 699	Materials testing machine	18
Fiber ropes, polyethylene	EN 700	Materials testing machine	18
Fiber ropes, splices	DIN 83319	Materials testing machine	18
Round and spirally braided man-made fiber ropes	DIN 83307	Materials testing machine	18
Polypropylene fiber ropes of yarn to	DIN 83329	Materials testing machine	18
bast fiber spinning method	2		.0
Agricultural twines			
Sisal agricultural twine	EN ISO 5080	Materials testing machine	18
Polyolefin agricultural twine	EN 906	Materials testing machine	18
Sisal binding twine	EN 12422	Materials testing machine	18
Polypropylene binding twine	EN 12423	Materials testing machine	18
Net threads and nets			10
Net yarns, tensile tests	DIN 53842-2, ISO 1805	Materials testing machine	18
Net yarns, strain behaviour	DIN 53846, ISO 3790	Materials testing machine	18
Not yamo, shall dollavidul	DIN 00040, IOU 0790	materials testing mathine	10

Contents	Test standard	Test means/Test device	Page
Net yarns, extension after immersion	DIN 53845, ISO 3090	Materials testing machine	
in water		-	
Fishing nets, tensile tests on net meshes	DIN 53844, ISO 1806	Materials testing machine	
Fishing nets, tensile tests on floater lines with	DIN 53847	Materials testing machine	
woven floaters			
Safety nets	EN 1263-1	Materials testing machine	18
Air-freight equipment, air-freight palette nets	ISO 4170	Materials testing machine	18
Aircraft equipment, air cargo load devices	ISO 8097	Materials testing machine	18
Thermal insulating materials			
Thermal insulating material for the building trade,	EN 826, ASTM C 165	Materials testing machine	18
compressive loading			
Thermal insulating material for the building trade,	EN 1605	Materials testing machine	18
deformation at compression and			
temperature loading			
Thermal insulating material for the building trade,	EN 1606	Creep tester	
long-term creep behaviour at compression loading			
Thermal insulating material for the building trade,	EN 1607	Materials testing machine	18
tensile testsvertical to the panel's plane			
Thermal insulating material for the building	EN 1608	Materials testing machine	18
trade, tensile tests in the panel plane			
Thermal insulating material for the building	EN 12089	Materials testing machine	18
trade, flexural loading			
Mineral fibre insulating slabs, compressive	DIN 52272-1	Materials testing machine	18
stress and compressive strength			
Mineral fibre insulating slabs, tear strength	DIN 52274	Materials testing machine	18
vertical to the insulation plane			
Insulating plates, load bearing capacity	ASTM E 1803	Materials testing machine	18
Finished parts for pipe insulation, break load	ASTM C 446	Materials testing machine	18
and calculated modulus of rupture			
Insulating blocks, breaking load	ASTM C 203	Materials testing machine	18
and flexural strength			
Textile joining systems			
Fasteners, closing and opening methods	EN 1414	Materials testing machine	18
Fasteners, peel strength	EN 12242	Materials testing machine	18
Fasteners, lengthwise shear strength	EN 13780	Materials testing machine	18

The classification of these standards (status August 2001) has been done in cooperation with Dr. Mathias Mägel, Sächsisches Textilforschungsinstitut e.V. (STFI), D-09125 Chemnitz (www.stfi.de)

Examples of textile materials

Fibers

Yarns and threads

Yarns and Rovings

Non-wovens

Wovens

Coated textiles

Geo-textiles

Tapes and beltings

Ropes and cordage

Application

Filaments, Yarns, Twines

Standard:	EN ISO 2062
Type of test:	Tensile test
Material:	Aramid yarn
Extensometer:	Crosshead monitor
Grips:	Pneumatic grips
Test speed.:	500 mm/min
testXpert [®] :	B069001.06.10

|Corr.

P . 1

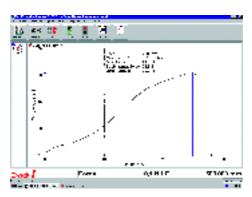
ek 01 5 1.1

ł

Example of mounting

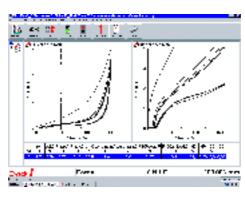
.. - na 🖞

:

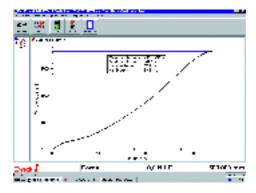

110 2011

••

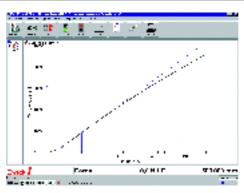
.



Standard:	EN ISO 2062
Type of test:	Tensile test
Material:	Sewing yarn
Extensometer:	Crosshead monitor
Grips:	Screw grips
Test speed.:	500 mm/min
testXpert®:	B069001.06.10



DIN 53835 Standard: Type of test: Elastic behaviour Material: Elastic yarn Extensometer: Crosshead monitor Spring loaded grips Grips: Test speed.: 500 mm/min testXpert[®]: B069005.03.10


Standard: EN ISO 2062 Type of test: Tensile test Material: Double twine Extensometer: Crosshead monitor Grips: Pneumatic grips Test speed.: 500 mm/min *testXpert*[®]: B069001.06.10

Application

Standard:	DIN ISO 2062
Type of test:	Tensile test
Material:	Multifilament yarn
Extensometer:	Optical
	extensometer
Grips:	Pneumatic grips
Test speed.:	500 mm/min
testXpert [®] :	B069001.00.10

test-curve in testXpert®

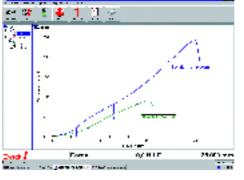
Example of mounting

Fabrics

Grips:

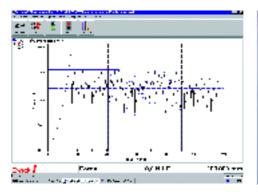
Test speed.:

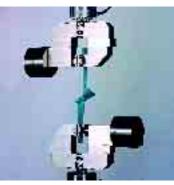
testXpert[®]:

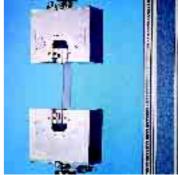

Standard:	EN ISO 13934-1
Type of test:	Tensile test
Material:	Airbag fabrics
Extensometer:	Crosshead monitor
Grips:	Pneumatic grips
Test speed.:	100 mm/min
testXpert®:	B069001.04.10

ιεδιλρεπ .	003001.04.10
Standard:	Marks & Spencer P12
Type of test:	Seam slippage of
	woven fabrics
Material:	Outwear fabrics

Extensometer: Crosshead monitor


Screw grips 100 mm/min


B069001.11.10



.	
Standard:	EN ISO 13937-2
Type of test:	Tear properties
Material:	Airbag fabrics
Extensometer:	Crosshead monitor
Grips:	Pneumatic grips
Test speed.:	100 mm/min
testXpert®:	B069003.09.10

Application

test-curve in testXpert®

Example of mounting

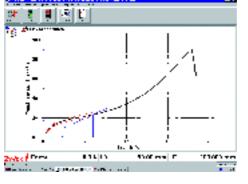
Coated fabrics

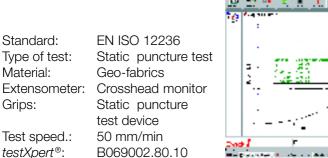
Standard:	ISO 3303 Methode
Type of test:	Bursting strength
Material:	Plastic-coated fabric
Extensometer:	Crosshead monitor
Grips:	Ball burst device
Test speed.:	300 mm/min
testXpert [®] :	B069002.00.10

Geotextiles

Standard:

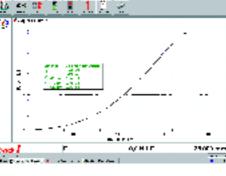
Material:

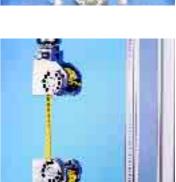

Grips:


Type of test:

Test speed.:

testXpert[®]:


Standard:	EN ISO 10319	
Type of test:	Tensile test	
Material:	Geo-non-woven	
	material	
Extensometer:	Optical extensometer	
Grips:	Hydraulic grips	
Test speed.:	20 % of L _o /min	
testXpert®:	B069001.09.10	



Belts, ropes, cordage

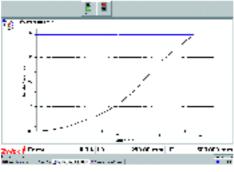
Standard:	EN 565
Type of test:	Tensile test
Material:	Belt seal
Extensometer:	Optical extensometer
Grips:	Roller grips
Test speed.:	500 mm/min
testXpert [®] :	B069001.00.10

16

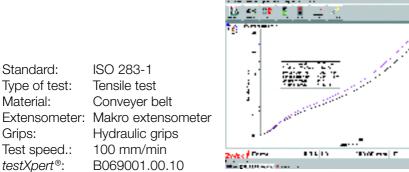
Application

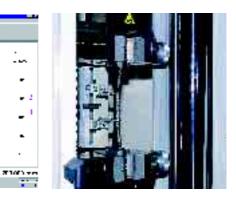
Standard:

Material:


Type of test:

test-curve in testXpert®

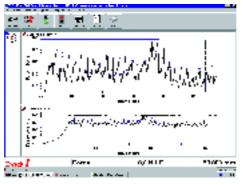

A REAL PROPERTY AND A REAL


Example of mounting

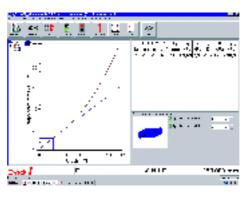
Standard:	EN 919	
Type of test:	Tensile test	4-1
Material:	Fiber rope	1 1
Extensometer:	Optical extensometer	
Grips:	Rope grips	
Test speed.:	500 mm/min	The second second
testXpert®:	B069001.00.10	

Grips:	Hydraulic grips
Test speed.:	100 mm/min
testXpert®:	B069001.00.10
Standard:	EN ISO 252-1
Type of test:	Adhesive strength

ISO 283-1


Tensile test

Conveyer belt


Standard:	EN ISO 252-1
Type of test:	Adhesive strength
	between constitutive
	elements
Material:	Conveyer belt
Extensometer:	Crosshead monitor
Grips:	Pincer grips
Test speed.:	100 mm/min
testXpert®:	B069003.00.10

Thermal insulating products

Standard: Type of test:	EN 826 Compression test
Material:	Insulation material
	Crosshead monitor
Grips:	Compression plates
Test speed.:	10% of d/min
testXpert®:	B069002.56.10

Materials Testing Machines

Field of application

Zwick materials testing machines are not only used for tensile tests on fibres, tapes, ropes, fabrics etc. or for compression tests on floor coverings or insulating materials, but also for tests on textile fastening systems as e.g. zip-fasteners and similar tests.

Basic concept

The Zwick program includes universal testing machines as tabletop and floor standing designs with different measurement- and control systems, load frames, drives and versatile function and supplementary units.

However in order to be able to offer the best machine for each requirement, Zwick has developed a userrelated concept. The user can choose among three machine versions, each of them being completely different as to equipment, performance features and also as to the capability of expansion:

- BasicLine
- Standard Line
- Allround Line

The decisive testing machine component is the measurement and control system. Its conception and its scope of performance decide which drive can be controlled, which measurement system can be connected to it and which functions can be controlled with it - and they thus determine the range of application and the testing machine's capability for future expansion.

The advantages to the user of the three different testing machine versions are as follows:

- The BasicLine is particularly suitable for functional tests on component parts and for the simple materials test
- The Standard line is ideal to solve simple test jobs reliably. It is a low-cost, sturdy solution which covers many testing needs
- The Allround line is the basis for a large spectrum of demanding test jobs and can easily be expanded with the requirements becoming more demanding. It is thus a solution that can be relied on for future requirements

Measurement and control system BasicLine

The electronics taken from existing Zwick machine types guarantees a very high availability and reliability of the test system. The measurement and control electronics is compactly packed in a housing. BasicLine testing machines can be operated in the Stand Alone mode without a PC and they can be operated directly via function keys on the testing machine. As standard it is additionally possible to operate the BasicLine with the test software *testXpert*[®], thus profiting from all the advantages of standardized test programs and from the many years of experience on the development sector.

Materials testing machine BasicLine Z0.5

Materials testing machine BasicLine Z020

Measurement and control system *testControl*

(for standard and allround version) By using most recent technologies and by granting highest quality standards *testControl* offers a maximum of technical performance and a long-term investment guarantee. These are the particular features of *testControl*:

- Time-synchronous test data acquisition with high resolution and measuring frequency
- Real-time processing of the test data in a 500 Hz cycle for the monitoring and event-related test sequence control (e.g. speed change when reaching the yield or proof stress) and for safety limit values
- Adaptive control for exactly reproducible speeds and positions
- The measurement and control electronics and the power electronics for the drive system in question are integrated in a housing in a space-saving way. Thus, the usual cabling can be dispensed with

Load frames

Zwick develops and manufactures load frames for nominal loads of up to more than 6,000 kN. Most applications in the textile industry require test loads of less than 250 kN (see table "Load frames and drive systems")

Single-column load frame (zwicki)

These load frames are designed with very rigid aluminium high-precision extruded profiles. The working area is freely accessible from 3 sides. Thus, it is predestined for the most different function tests on small parts and for Zwick hardness testing machines. It only requires a small floor space. Due to its light weight, it is easy to transport.

Load frames in table-top version

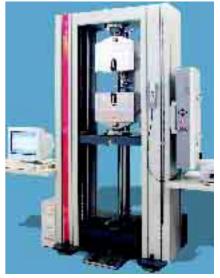
The load frames are designed with patented aluminium high-precision extruded profiles used for guiding. They are light, very rigid, and serve simultaneously as lead-screw guide and protection. T-shaped grooves on the outer sides allow a simple fitting of accessories such as safety devices without being impeded by the crosshead.

All load frames with two profiles except for the BasicLine – can be equipped with legs. Advantages are:

- Positioning of the working area to an optimum height for the user
- Comfortable seated operation with absolute freedom for leg movement, also suitable for wheelchair users

Load frame as floor standing model

These load frames are equipped with 2 or 4 hard-chrome plated round columns and 2 precision ball screws. They are preferably used for the testing of specimens with large extensions, large specimens or large parts and they are also used with larger temperature- or climatic chambers.


One or (optionally) two working areas are possible.

Materials testing machine Z2.5 (zwicki) with *testControl* Stand Alone variant

Material testing machine Z050 with testControl PC variant

Material testing machine Z100 with testControl PC variant

Features of the BasicLine, Standard- and Allround-Line

Machine component or function	BasicLine	Standard Line	Allround Line
Load frame	DasicLine		
Type of set-up			
- Table-top machine (nominal force)	500 N to 20 kN	1 to 100 kN	up to 100 kN
- Floor stand. machine (nominal force)	-	50 to 250 kN	50 to 250 kN
Support and guiding columns			
- No. of columns	2	2 or 4	2 or 4
- No. of Alluminium profiles	1 (Z0.5)	1 or 2	1 or 2
No. of working areas	1	1 or 2	1 or 2
• Expanded design (higher and/or larger)	no	yes	Ves
Drive system		y	<u>,</u>
Electro-mechanical			
- No. of ball screws	1 or 2		1 or 2 1 or 2
- DC-Motor	yes	only zwicki	only zwicki
- AC-Motor	no	yes (without zwicki)	yes (without zwicki)
Measurement and control system		,	,
BasicLine (also usable without PC)	yes	no	no
• testControl PC-variant (Standard)	no	yes	yes
testControl Stand Alone variant (Option)	no	optional	optional
Software			
 test software testXpert[®] (with PC) 	optional	optional	optional
Transducer			
 Strain gauge load cell 	1 (interchangeable)	1 (optional up to 2)	1 (optional up to 3)
 Digital crosshead monitor 	integrated	integrated	integrated
 Digital extensometer 	no	optional 1	yes (optional up to 3)
Analogue Extensometer	no	optional 1	yes (optional up to 3)
Connection of external systems			
 Digital extensometer 	no	yes	yes
 Analogue extensometer 	no	yes	yes
 Analogue reduction-in-width-monitor 	no	yes	yes
Video Capturing	no	yes	yes
 Switch Contact 	no	yes	yes
Switch Control	no	yes	yes
 Further measurement systems 	no	yes	yes
Control of external systems			
 Specimen grips (mot., pneum., hydr.) 	no	no	yes
Extensometer systems	no	semi-automatic	full-automatic
Supplementary units for special applic	ations (optional)		
Torsion drive	no	no	yes
Torque transducer	no	no	yes
 Multi-channel force measuring system 	no	no	yes
 High-temperature testing equipment 	no	conditional	yes
 Low-temperature testing equipment 	no	conditional	yes

Load frames and drive systems of the BasicLine

Series	Z0.5	Z005	Z010	Z020
Туре	zwicki	Table top	Table top	Table top
Max. load, kN	0.5	5	10	20
Working area, max.				
- Height, mm	596	561/1061	1041	1041
- Width, mm	no limit	420	420	420
- Depth, mm	99.5	no limit	no limit	no limit
Crosshead speed				
- min., mm/min	0.001	0.001	0.001	0.001
- max., mm/min	1500	500	1000	500
Crosshead travel resolution, µm	0.226	0.05	0.09	0.045
Max. power consumption, kVA	0.4	0.6	0.6	0.6

Load frames and drive systems of the Standard and Allround Line

Series	Z1.0	Z2.5	Z005	Z010	Z020	Z030
Туре	zwicki	zwicki	Table top	Table top	Table top	Table top
Max. load, kN	1	2.5	5	10	20	30
Working area, max.						
- Height, short, mm	-	573	-	-	-	-
normal, mm -	1073	1058	1058	1058	-	
higher, mm	1373	1373	1458	1458	1458	1380
higher and larger, mm	-	-	-	1787	1787	-
- Width, normal, mm	no limit	no limit	440	440	440	440
larger, mm	-	-	-	640	640	-
- Depth, mm 99.5	99.5	no limit	no limit	no limit	no limit	
Crosshead speed						
- min., mm/min	0.001	0.001	0.005	0.005	0.005	0.005
- max., mm/min	1800	800	3000	2000	1000/20001)	1000
Crosshead travel resolution, µm	0.00023	0.0001	0.041	0.027	0.014/0.054	0.0271
Max. power consumpton, kVA	0.4	0.4	2/1.9	1.9	2.1/2.6	2.3
¹⁾ depending on the selected drive	e system and it					
Series	Z050	Z050	Z100	Z100	Z150	Z250
Tuna Tabla tan						
Type Table top	Floor stand.	Table top	Floor stand.	Floor stand.	Floor stand.	
Max. load, kN 50	Floor stand. 50	Table top 100	Floor stand. 100	Floor stand. 150	Floor stand. 50	
Max. load, kN 50 Working area, max.						
Max. load, kN 50 Working area, max. - Height, short, mm			100 -		-	-
Max. load, kN 50 Working area, max. - Height, short, mm normal, mm	-					- 1715 1715
Max. load, kN 50 Working area, max. - Height, short, mm normal, mm higher, mm		100 - -	100 - 1824 -	150 - - -	50 - 1824 -	-
Max. load, kN 50 Working area, max. - Height, short, mm normal, mm higher, mm higher and larger, mm	50 - 1380 -	100 - - - 1765	100 - 1824 - 1360	150 - - - 1765	50 - 1824 - 1660	- 1660
Max. load, kN 50 Working area, max. - Height, short, mm normal, mm higher, mm higher and larger, mm - Width, normal, mm	50 - 1380	100 - - 1765 630	100 - 1824 -	150 - - 1765 630	50 - 1824 - 1660 630	- 1660 630
Max. load, kN 50 Working area, max. - Height, short, mm normal, mm higher, mm higher and larger, mm - Width, normal, mm larger, mm	50 - 1380 - 440 -	100 - - 1765 630 1030	100 - 1824 - 1360 640 -	150 - - 1765 630 1030	50 - 1824 - 1660 630 1030	- 1660 630 1030
Max. load, kN 50 Working area, max. - Height, short, mm normal, mm higher, mm higher and larger, mm - Width, normal, mm larger, mm - Depth, mm	50 - 1380 -	100 - - 1765 630	100 - 1824 - 1360	150 - - 1765 630	50 - 1824 - 1660 630	- 1660 630
Max. load, kN 50 Working area, max. - Height, short, mm normal, mm higher, mm higher and larger, mm - Width, normal, mm larger, mm - Depth, mm Crosshead speed	50 - 1380 - 440 - no limit	100 - - 1765 630 1030 no limit	100 - 1824 - 1360 640 - no limit	150 - - 1765 630 1030 no limit	50 - 1824 - 1660 630 1030 no limit	- 1660 630 1030 no limit
Max. load, kN 50 Working area, max. - Height, short, mm normal, mm higher, mm higher and larger, mm - Width, normal, mm larger, mm - Depth, mm Crosshead speed - min., mm/min	50 - 1380 - 440 - no limit 0.005	100 - - 1765 630 1030 no limit 0.005	100 - 1824 - 1360 640 - no limit 0.005	150 - - 1765 630 1030 no limit 0.005	50 - 1824 - 1660 630 1030 no limit 0.005	- 1660 630 1030 no limit 0.005
Max. load, kN 50 Working area, max. - Height, short, mm normal, mm higher, mm higher and larger, mm - Width, normal, mm larger, mm - Depth, mm Crosshead speed - min., mm/min - max., mm/min	50 - 1380 - 440 - no limit 0.005 600	100 - - 1765 630 1030 no limit 0.005 400/2000 ¹⁾	100 - 1824 - 1360 640 - no limit 0.005 200/1500 ¹⁾	150 - - 1765 630 1030 no limit 0.005 200/1000 ¹⁾	50 - 1824 - 1660 630 1030 no limit 0.005 900	- 1660 630 1030 no limit 0.005 600
 Max. load, kN 50 Working area, max. Height, short, mm normal, mm higher, mm higher and larger, mm Width, normal, mm larger, mm Depth, mm Crosshead speed min., mm/min max., mm/min Crosshead travel resolution, μm 	50 - 1380 - 440 - no limit 0.005 600 0.0163	100 - - 1765 630 1030 no limit 0.005 400/2000 ¹⁾ 0.0270	100 - 1824 - 1360 640 - no limit 0.005 200/1500 ¹⁾ 0.0260	150 - - 1765 630 1030 no limit 0.005 200/1000 ¹⁾ 0.0136	50 - 1824 - 1660 630 1030 no limit 0.005 900 0.0123	- 1660 630 1030 no limit 0.005 600 0.0082
Max. load, kN 50 Working area, max. - Height, short, mm normal, mm higher, mm higher and larger, mm - Width, normal, mm larger, mm - Depth, mm Crosshead speed - min., mm/min - max., mm/min	50 - 1380 - 440 - no limit 0.005 600 0.0163 2.3	100 - - 1765 630 1030 no limit 0.005 400/2000 ¹⁾ 0.0270 5	100 - 1824 - 1360 640 - no limit 0.005 200/1500 ¹⁾	150 - - 1765 630 1030 no limit 0.005 200/1000 ¹⁾	50 - 1824 - 1660 630 1030 no limit 0.005 900	- 1660 630 1030 no limit 0.005 600

Electro-mechanical drive systems

The basis of all electro-mechanical drive systems are backlash-free and low-friction ball screws and digitally controlled drive systems (load frames for test loads of more than 600 kN are equipped with servohydraulic or hybrid drives). Together with the digital measurement and control system they have the following advantages:

- Extremely high, stepless speed range
- Very low speeds adjustable (from about 0.001 mm/min on)
- High-precision and exactly reproducible positions and speeds

The testing machines designed with single-column load frames (zwicki and BasicLine) are equipped with low-cost d.c. drives, all the other ones with particularly low-inertia, brushless three-phase drives.

Force transducer

Strain gauge load cells are available for precise force measurements from 0.04 N onwards. Together with the digital measurement electronics they have the following advantages:

- Automatic recognition of the load cell's serial number
- Automatic recognition of the setting and calibration parameters
- Overload protection
- Automatic zero and sensitivity alignment
- Compensation of temperature fluctuations
- High measuring frequency
- High test data resolution
- Accuracy of 1% of the displayed value (1% error limit) from 1/500 and 0.5% of the displayed value on 1/100 of the nominal load. (Type II load cell, $F \ge 500N$)
- Manufacturer's test certificate to give proof of the works calibration

Load cell with one or two sided mounting stud and self-identifying sensor plugs are available for nominal load capacities from 10 N on.

Force transducer including sensor plug

Test software testXpert®

Range of application

testXpert[®] is the universal Zwick test software for materials, component, and functional testing. It's application range goes from Zwick materials testing machines (for tensile, compression, flexure and functional testing) to hardness testers, pendulum impact testers, extrusion plastometers, automated test systems, etc. right up to the refurbishment of testing machines of a variety of makes and models.

Duties and functions

The essential fields of use of *testXpert*[®] are:

- verification and re-equipping the test machine
- preparation of the test or test series
- performance of the test
- evaluation and documentation
- data management
- quality management and
- data exchange between testXpert[®] and other applications (Word, Excel etc.)

testXpert[®] supports the user for all tasks with software wizards and editors, explanatory pictures and video sequences, situation-specific user tips, warnings, error messages and online help.

Future-oriented concept

The *testXpert*[®] test software uses the special properties of the objectoriented programming with respect to a clear grouping in tasks and functions. Structure and contents are determined by the Zwick application and software know-how. The *testXpert* [®] concept is therefore a guarantee for highest flexibility, functional safety as well as simple usability.

The essential characteristic features are:

- uniform basic software for all applications
- modular system for test programs
- user support through software tools

Modular system

The test programs are compiled by Zwick from a selection of several hundred software modules. The modules are sub-divided into classes such as test parameters, test sequence phases, screen views etc. They are continuously updated and expanded with respect to new states of knowledge and necessary supplements. This makes testXpert[®] an intelligent software, and thus enables the realization of test programs strictly to test standards and test programs related to practical applications. Thanks to the numerous possibilities of this system, testXpert® can be put to universal use for a wide applicational spectrum and for a variety of testing machines.

Test programs

The test programs compiled by Zwick stipulate how tests are to be run. Their basis are selected software modules that are linked toone another and are pre-configured through fixed parameters depending upon the functions required. Thus the user receives from Zwick a "test template" in which only variable parameters must be entered.

There are three variants available for a wide range of requirements:

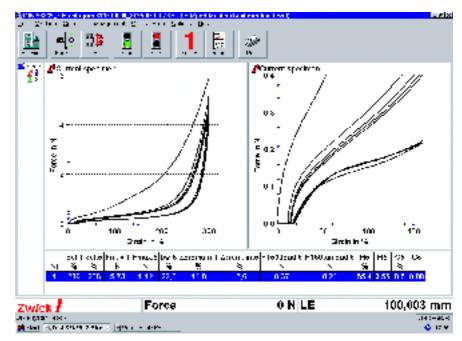
- Master test programs
- Standard test programs, and
- Customized test programs

International quality standards

To comply with international quality standards, each and every version must be transparent, documented and archived for 10 years. The *testXpert*[®] test software fully meets these requirements and even the particularly strict guidelines of the Good Manufacturing Practices (GMP).

The entire software development process and its components are diligently documented and archived from the source code through to the software tools used, for each and every version. This is valid for each phase from the analysis via the specification, design and implementation up to the test. Conformity to the standard ISO 9000-3 for development of *testXpert*[®] has been confirmed via audit report no. QM-F-96/1016.

Safety in detail


Windows software is normally used in offices. However, *testXpert*[®] takes over an additional and especially critical task: monitoring and controlling machines. Machine damage and potential danger to persons must be ruled out. That's why *testXpert*[®] doesn't use any overlapping windows in the test mode to avoid hiding important displays or key fields.

Automatic acceptance of system data

Different test jobs require different test machines with different and usually, interchangeable components. Their specific properties are characterised by the system data (nominal force, travel, speed range, mounting height, calibration factors, etc.). Organisational data also belong to the above, e.g. the series number or the date of the last calibration.

testXpert[®] accepts this data automatically directly following the program start

- for the necessary settings
- for the determination of safety limit values
- for the correct measurement signal evaluation

 $testXpert^{\odot}$ – the strictly object-orientated test software is available in several language versions; among others in english, french and german

Furthermore *testXpert*[®] checks whether or not

- the test can be carried out with this configuration
- all settings have been made
- the data have changed for the current test

Simplest operation

Operation is reduced to a one-button operation, i.e. activating the start button, for standard applications. This is possible because testXpert® automatically records the test data, and dependent upon this, controls and monitors the test sequence and determines and documents the test results.

Only two steps to testing

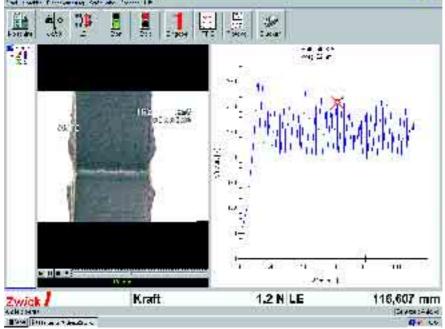
Preparation of a test series requires only two steps:

- call-up the test program foreseen for the required application
- input or selection of variable parameters

Optimum user information

All displays necessary for carrying out a test and a test series, can be grouped together in a clear and concise manner in one single screen setting.

- input fields for specimen-specific test parameters
- curve diagram (single or multiple curves)
- tables for test results
- tables for result statistics


Data saving for further use

Depending upon the preselection in the test program, not only all data but also selected result data from a test or test series can be saved. Saving of all data offers the possibility of tracing the origin of the result data up to configuration and settings for the test machine. The standardized measurement data. i.e. the data converted to its basic units can be repeatedly displayed in the simulation mode and can also be evaluated according to other criteria.

Video Capturing

The test software *testXpert*[®] not only supports the user by means of "Help" videos. It is also possible to carry out multimedia tests by using a video camera and a videocapturecard with the video pictures being recorded time-synchronously with the test data.

- With the cursor keys, a "video reticle" can be moved over the test curve and the corresponding picture can be displayed
- The pictures can be captured at a preselected distance of the measuring points or in dependence on the event
- The video can also be played alone, irrespective of testing machine
- Distances between two points and angles between three points, radii, diameters and areas can be measured from the specimen in pictorial representation
- Optionally, the pictures can also be output with dimension lines and test data

With video capturing the test data and the corresponding video pictures of the test

configuration are recorded and saved (example: adhesion test of a textile-rubber compound)

Testing machine with video camera

Specimen grips for tensile, creep, and cyclical tests

Textile materials and the specimens taken from those materials are available in many different types. They are e.g. different as to

- the basic materials and their combination (from animal, vegetable, or synthetic products)
- shapes and dimensions (thread, tape, strip etc.)
- structure (fibres, monofil, multifil, spun, braided, woven, knitted etc.),
- treatments (impregnated, coated etc.)
- properties (strength, stretching ability, elasticity, homogeneity)

According to this variety a large spectrum of specimen grips is required to meet the individual requirements.

For specimens from these materials tensile forces can only be transmitted by means of the force-holding principle. The frictional forces between specimen ends and specimen grip are principally applied according to 2 principles:

Principle A – Flat clamping between clamping jaws

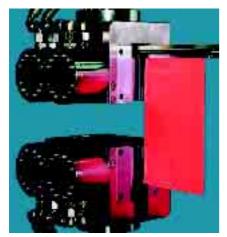
The clamping force (standard force) is either applied by an additional, outer force (hydraulic or pneumatic cylinders or screw drive) or by the deflection and amplification of the test force (self-clamping via wedges, eccentrics or lever systems). The force is nearly the same over the entire gripping length. The frictional force acts on 2 opposed sides of the specimen.

Principle B – Clamping by wrapping aroung fixed cam plates or rollers

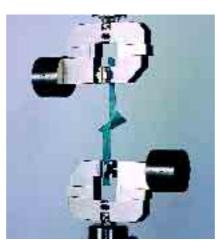
The standard force depends on the locally acting test force and its angled position and increases from zero as the gripping length increases also. The frictional force only acts on one specimen side.

When combining these two principles, the wrapping around always has priority over the clamping. Its practical realization and the shapes, dimensions and versions (frictional behaviour, elasticity) of the clamping/friction surfaces are particularly important for the field of application of the specimen grips.

When selecting the specimen grips, the following requirements must also be taken into consideration:



If the specimen breaks during the tensile test at the place where it is gripped, then smaller values are measured for the maximum force or the tensile strength and the strain assigned to it. According to most standards such tests are therefore evaluated as non-valid tests.


The probability of jaw breaks is considerably higher for a gripping action according to principle A (flat clamping) than according to principle B (wrapping around), because the tensile force is reduced over a relatively short gripping length. The high gripping force already acting at the beginning of the gripping action prevents a partial "slippage" of the specimen. This can lead to a "piling up of the force" at the beginning of the clamping and can thus release a premature break.

2. Accuracy of the strain measurement

For many applications, the strain can be measured indirectly as crosshead travel extension, because the demands on the measuring accuracy are not very high and thus errors through deformation of the testing machine

Hydraulic grips for geo-fabrics

Pneumatic grips

Screw grips

Specimen grips - range of Application

	Force		Filaments, fine yarns	tic	eral	nical	-woven ics	eral ics	nical ics	ics	gs,	Belts Cordage	Conveyor belts
Type of Grips	holding principle	Nominal Load	Filan	Elastic yarn	Gene	Tech yarn	Non-w	Gen	Technic fabrics	Geo- fabri	String	Belts Cordá	Conv belts
Hydraulic grips	A	10 kN to 250 kN	-	-	-	-	✓	✓	✓	✓	-	-	✓
Pneumatic grips	А	20 N to 100 kN	-	-	\checkmark	-	\checkmark	✓	\checkmark	-	-	-	\checkmark
Pneumatic grips	B + A	2,5 kN to 20 kN	-	-	\checkmark	\checkmark	-	-	\checkmark	-	\checkmark	-	-
Wedge grips	А	2,5 kN to 250 kN	-	-	-	-	-	-	-	-	-	-	•
Screw grips	А	20 N to 50 kN	\checkmark	-	\checkmark	-	\checkmark	\checkmark	-	-	-	-	\checkmark
Wedge screw grips	А	500 N to 250 N	-	-	-	-	-	-	-	-	-	-	-
Spring screw grips	А	20 N / 50 N	\checkmark	0	-	-	-	-	-	-	-	-	-
Pincer grips	А	500 N to 10 kN	-	-	-	-	-	-	-	-	-	-	•
Toggle grips	В	300 N to 2,5 kN	-	-	-	-	+	-	-	-	-	-	-
Double toggle grips	B + A	500 N	-	\checkmark	-	-	-	-	-	-	-	-	-
Rope grips	B + A	2,5 kN to 100 kN	-	-	-	-	-	-	-	-	\checkmark	-	-
Curved grips	B + A	10 kN / 20 kN	-	-	-	-	-	-	\checkmark	-	✓	\checkmark	-
Roller grips	В	2,5 kN to 250 kN	-	-	-	-	-	-	\checkmark	✓	-	✓	-

✓ - Suitable for this application

O - Suitable only for cyclic tests

• - Suitable only for test to determine the shear, tear or adhesive properties

+ - Suitable only for simple tensile tests, specimen width max. 32 mm

can be neglected. This applies particularly to specimen grips where the gripping force is applied by an additional force.

The realization of the test forcegripping force in case of self-gripping specimen grips has the effect that the bending up of the specimen grips and the thickness reduction of the specimen have to be compensated by a considerably larger clamping jaw tracking. This can lead to an inadmissible falsification of the strain measurement.


Grip-sensitive specimens however require specimen grips where the test force is reduced decreasingly over larger gripping lengths, e.g. via correspondingly shaped cam plates. This has the consequence that the gripping length (reference size for the strain calculation) is not exactly defined. The strain is moreover constantly reduced in the range of the relatively long gripping area. Therefore the strain can only be determined exactly if an extension measurement system is used to record the deformation directly on the specimen.

Spring screw grips

Pincer grips

Double toggle grips

Hydraulic specimen grips

- One or two-sided clamping jaw positioning
- Adjustable clamping force (Option: can be controlled by the test software dependant on the test force, for specimens that are sensitive to gripping)
- Exchangeable clamping jaws
- Special version with tandem cylinder for geo-textile specimens with a width of 200 mm for a homogeneous gripping force distribution over the entire specimen width
- Special versions for the use in temperature/climatic chambers at -70 °C to +250 °C
- Hand or foot control or control via the test software testXpert[®]

Pneumatic specimen grips

- One or two-sided clamping jaw positioning
- Adjustable clamping force
- Exchangeable clamping jaws
- Special versions for the use in temperature-/climatic chambers at -70 °C to +250 °C
- Special versions with cam plates
- Hand or foot control

Screw grips

- Clamping force depends on the screw moment and the elasticity of the specimen grip
- Low-cost

Spring screw grips

- Clamping pressure adjustable by pre-stressing a spring.
- Thread guide for a simple, centrical gripping.
- Temperature range 15 °C to +80 °C

Pincer grips

Temperature range
 - 40 °C to +250 °C

Double toggle grips

- Exact strain measurement by adapting the distances of the deflection pulleys to the specimen's elastic behaviour
- Temperature range -15 °C to +80 °C

Rope grips

- With a single or multiple wrapping around and mech., pneum. or hydr. gripping of the rope's end
- Temperature range -70 °C to +250 °C

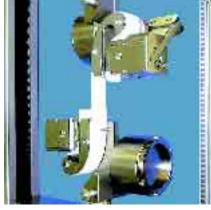
Curved grips

- Mech. or pneum. flat clamp with cam plate
- Temperature range: mechanical 0 °C to +100 °C pneumatic +10 °C to +35 °C

Roller grips

- Gripping by means of a multiple wrapping around
- Temperature range -40 °C bis +250 °C

Note:


The wedge and wedge screw grips used for rigid specimens are not suitable for tensile tests on flexible, textile specimens.

Tools for compression tests for the determination of the compression characteristics of insulating materials according to EN 826

A lot of round, square, and rectan gular compression platens are available in different dimensions. The lower compression platens are always mounted rigidly. The upper compression platens may be mounted spherically (freely movable or alignable) to transmit the compressive force homogeneously over the entire compression platen.

Tools for compression tests

The suitable test configuration may be selected from a large range of different bending tables with rigid and movable supports and bending fins to meet the requirements of nearly every application.

Curved grips with pneumatic end clamping

Rope grips with mechanical end clamping

Roller grips

Extensometer

Crosshead travel monitor

Standard equipment of all universal testing machines are digital crosshead travel monitors for a highly accurate and exactly reproducible measurement of the crosshead travel extension. Thus, the strain can be measured indirectly for many applications (without additional transducer directly on the specimen). This applies practically for all tear propagation, separation, peel, shear, and compression tests and for many tensile tests.

Direct strain measurement

Some test standards as e.g. EN ISO 10319, tensile test on large specimen strips and ISO 283-1, tensile test on textile conveyor beltdumbbell specimens, require the strain measurement to be carried out directly on the specimen to avoid any measuring errors that are caused by machine deformation, clamping jaw tracking, partial slippage of the specimen out of the gripping position. This applies particularly to the use of specimen grips where the specimens are gripped in the wrap-around principle. The strain is defined as extension of the initial gauge length. The extension can be measure in 2 different ways:

1. Contact measurement

Two sensor arms are attached to the specimen at the distance of the initial gauge length; they record the extension of the gauge length up to the break (the end points of the gauge length are not marked).

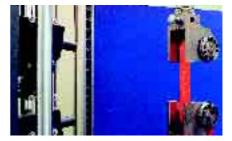
The force to move the sensor arms must be "applied" by the specimen and influences the force measurement. In order to measure also small test forces with a sufficient accuracy, it is necessary to keep the dragging force for the sensor arms as low as possible.

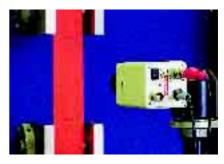
At the specimen break, the energy which is elastically stored in the specimen parts, is converted to a kinetic energy. All of a sudden, the stretched, flexible specimen parts rebound to nearly their initial length just to get bent at a high speed or to deflect laterally. This "whip effect" can damage or even destroy the sensor arms. The longer the specimen parts stretch, the higher the effect. This danger is particularly large when using specimen grips with wrap-around principle.

2. Contact-free measurement

The initial gauge length is marked on the specimen with measurement marks. The travel extension of the marks is recorded optically. The measuring system cannot be damaged.

Extension measurement systems


A simple, safe and economic extension measurement is only possible by means of a relatively large technical effort. In addition to electronic or optical test data transducers, also motor-driven sensor arms, measuring slides, control devices, microcomputers and programs, i.e. complete systems might – according to the function principle – also be required.


Long stroke extensometer

Macro extensometer

Optical extensometer

Video extensometer

Extensometers – Help for choice

Extensometers – Help to					-							
Application						xtenso						
			h	otwoon		nping th	. · · · · · · · · · · · · · · · · · · ·		ing area	ind plat		loro
			De	etween	clampin	g jaws	D	y wrapp	ing arou	und plate	-	
Materials characteristics to be determined and	Crosshead monitor	Macro extensometer	Long stroke extensometer	Optical extensometer	Video extensometer ¹⁾	Laser extensometer	Crosshead monitor	Macro extensometer	Long stroke extensometer	Optical extensometer	Video extensometer ¹	Laser extensometer
the related standards	5 D	Ma	ext.	ext	Vid	Las	5 e	Ma	ext	ext	Vid	Las ext
Tensile modul					~ ~		• -			•••		
• EN ISO 10618	-	✓	-	-	✓	_	_	_	_	-	_	_
• EN 12562, EN 13002-2, EN 13003-2	~	•	-	-	•	-	+	•	-	-	•	-
Secant rigidity and												
strain at max. force												
• EN ISO 10319	-	-	-	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	\checkmark
Strain at x% of max. force												
• ISO 283-1	-	✓	-	-	✓	-	-	-	-	-	-	-
Strain at break												
• ISO 283-1	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-
Strain at max. force and break												
EN ISO 10618	`_	.(.(_						
 EN 12562, EN 13002-2, 	~	ě	-	-	ě	_	-	-	_	-	-	-
EN 13003-2	•	•			•			•			•	
• EN ISO 5079, ASTM D 38229,	\checkmark	-	-	-	-	-	-	-	-	-	-	-
ASTM D 3379												
 EN ISO 2062, DIN 53834-2, ASTM D 2256 	~	•	•	•	•	-	+	•	•	•	•	-
ASTM D 885, cords	-	-	-	-	-	-	+	0	0	•	•	-
• ASTM D 885, fabrics	\checkmark	•	•	•	•	•	-	0	0	\checkmark	\checkmark	\checkmark
• ISO 6939, ASTM D 1578	\checkmark	•	•	•	•	-	+	•	•	•	•	-
• ISO 3341	\checkmark	•	-	-	•	-	+	•	-	-	•	-
• EN ISO 9163	\checkmark	•	•	•	•	-	+	•	•	•	•	-
• EN 13844	-	-	-	-	-	-	+	0	0	•	•	•
• EN ISO 13934-1, ASTM D 168	2√	•	•	•	•	•	-	0	0	•	•	•
• EN 29073-3, EN 4606, EN 334	12√	•	•	•	•	•	-	-	-	-	-	-
• EN ISO 1421	\checkmark	•	•	•	•	•	-	0	0	•	•	•
• EN 1492-1	-	-	-	-	-	-	-	0	0	\checkmark	\checkmark	\checkmark
• EN 61067-2, EN 565	-	0	0	\checkmark	\checkmark	\checkmark	-	0	0	\checkmark	\checkmark	\checkmark
• EN 919, ASTM D 4268, EN 89	2 -	-	-	-	-	-	-	-	-	\checkmark	\checkmark	\checkmark
• EN 564	-	-	-	-	-	-	-	0	0	\checkmark	\checkmark	✓

 \checkmark - Suitable for this application

+ - Suitable for this application if the deflection in the specimen grips is max. 180°

O - Suitable for this application if there is no risk that the sensor arms get damaged due to specimen parts rebounding at specimen break

• - Is used if a higher measuring accuracy without clamping influence is required. Mechanical measuring systems can only be used

if there is no risk that they get damaged at specimen break. When using contactless measuring systems, a specimen marking is required

¹⁾ The objectives of the video measuring system cannot be changed during the test. Optionally the determination of variations in width are also possible

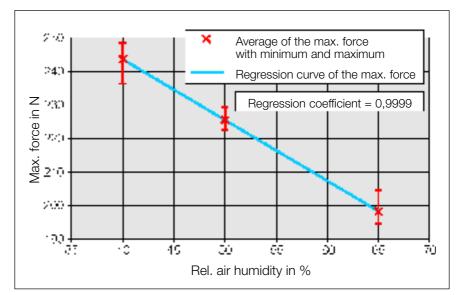
Extensometer with sensor arms – Technical data / special features

	Macro	Long stroke				
	extensometer	extensometer				
Measurement system	Incremental	Incremental				
Gauge length L_0	10 to 100/205 mm	10 to 1000 mm, manual setting				
Measuring range	80/120/160 mm	1000 mm – L _o				
Resolution	0.3/0.6/0.9/1.2 µm	5 µm				
Accuracy	Class 1 acc. to EN 10002-4,	1% of reading or 0.01 mm,				
	better than ISO 5893, grade A	whatever is greater				
Inertia force	< 0.05 N	< 0.2 N				
Special features	motorized senor attachment	motorized senor attachment				
	motorized gauge length setting					
	(allround version)					
Applications	textiles and compounds	textiles and compounds				
	With low or medium strain	with max. forces > 20 N				
Advantages	 robust and simple to use 	 robust and simple to use 				
	 low inertia force 	 strain measurement until fracture 				
	 crosshead contact protection 	without lifting the sensor arms				
	 exchangeable sensor arms for 	(rotatable knife edges)				
	different measuring ranges	 exchangable sensor arms 				
	 convenient for measurements 	convenient for measurements				
	in temperature chambers	in temperature chambers				

Non-Contacting Extensometer – Technical data / special features

	Optical	Laser	Video
	extensometer	extensometer	extensometer
Measurement system	Incremental, 2 cameras	Rotation laser, 0.5 W He/Ne	Digital video camera with image processing system
Gauge length L_0	10 to 900 mm	10 mm (tension) 20 mm (compression)	min. 5 mm
L₀-marking Measuring range	circular reflectors 1000 mm – L _o	line reflectors ca. 400 mm	line reflectors Field of view ¹⁾ : i.e. 50/200/1000 mm
Resolution Accuracy	5 µm 1% of reading or 0.03 mm Whatever is higher	12 μm Class 1 acc. to EN 10002-4, better than ISO 5893, grade A1 for extensions > 5 mm	0.5 / 2 / 10 μm1) Class 1 acc. to EN 10002-4, better than ISO 5893, grade A1 (depends on lenses)
Advantages	 simple-to-use measurement for materials with high strain secure and accurate measurement until fracture convenient for measure- ments in temperature chambers through a heated optical glass window automatic gauge length recognition 	 convenient for measure- ments in temperature chambers through a heated optical glass window 	Very adaptable for different materials and test procedures

¹⁾ Measuring range and resolution depends on lenses


Temperature and climatic chambers

Temperature / climate

Many textile and textile-related materials strongly change their mechanical properties depending on the humidity of air and ambient temperature. One of these influences is illustrated by the following graphic. It shows how the maximum tensile force of a viscose fabric is reduced as the relative humidity of air increases.

According to the later use of the material, particularly in the geotechnical, automobile, and aeronautics industry, it may be very important to know the behaviour of materials under different environmental conditions.

The mechanical properties of textile and textile-related materials in an extended temperature and climatic range are predominantly tested for research and development purposes.

Maximum tensile force depending on the relative humidity of air for a viscose fabric

Zwick offers a complete product range of temperature devices corresponding to the multitude of different requirements.

Temperature chambers

Zwick temperature chambers show the following characteristics:

- Aperture for sensor arms on the rear left side (45°)
- Eurotherm temperature controller with digital display for actual and set value
- Illumination inside the chamber
- Front door with insulated window
- * Sliders for removing the chamber without dismounting the grips
- Insulation and electrical design according to the CE safety regulations

Temperature chamber

Used with Table	top and floor s	tanding machine	Only floor st	anding machines
Height	normal	higher	normal	higher
Width	normal	normal	larger	larger
Dimensions (external/intern	al)			
Height, mm	650/500	850/700	800/650	1000/850
Width, mm	400/260	400/260	600/450	600/450
Depth, mm	825/360	825/360	1150/645	1150/645
Temperature range (from/t	:O)			
No cooling	amb./250 °C ^{2) 3)}	amb./250 °C ^{2) 3)}		
Cooling with				
• CO ₂	-60/250 °C3)	-60/250 °C ³⁾	-60/250 °C ^{1) 3)}	-60/250 °C ^{1) 3)}
• LN ₂	-80/250 °C3)	-80/250 °C ³⁾	-80/250 °C3)	-80/250 °C ³⁾
 Air cooled refrig. unit 	-40/250 °C3)	-40/50 °C ³⁾	-40/250 °C3)	
	-40/250 °C3)			
	-70/250 °C3)	-70/250 °C ³⁾	-70/250 °C ³⁾	-70/250 °C ³⁾
 Water cooled refrig. unit 	-40/250 °C3)	-40/250 °C ³⁾	-40/250 °C3)	
-	-40/250 °C3)			
	-70/250 °C ³⁾	-70/250 °C ³⁾	-70/250 °C ³⁾	-70/250 °C ³⁾

¹⁾ The depth of the chamber is 1080/540 mm

²⁾ Without opening for mechanical or optical extensioneters, without removeable sliders

³⁾ Chambers with further temperature ranges on request

Climatic chambers

Temperature chambers with control of the relative humidity of air are called climatic chambers. Since the requirements for the humidity and temperature range strongly vary, climatic chambers are specified on request.

Available options

Several options are available according to the specification of the testing machine and the needs of the laboratory.

- heatable optical glass insert to ensure a homogeneous temperature distribution when using optical extensometers
- guiding rails or trolley to move the chamber out of the test area
- recording and control of the temperature by the testXpert(r)-Software via RS 232-interface
- direct temperature measurement and control on the specimen
- liquid nitrogen tank, 100 litres, with pressure device, control valve, filling level indicator and safety device

Cooling with liquid nitrogen (LN₂) or carbon dioxide (CO₂)

This type of cooling is used if tests below room temperature are to be carried out from time to time. The cooling effect generated by vaporizing the liquid nitrogen or carbon dioxide. These gases are non-toxic. A sufficient ventilation of the testing laboratory is required, however.

The optional 100 litres liquid nitrogen tank (3/8"-connection) is sufficient for several hours of tests.

Cooling by use of a refrigeration unit

Cooling is generated by a compressor. This method is used if tests below room temperature are frequently required, if procurement of liquid nitrogen or carbon dioxide is too difficult or if the use of liquid nitrogen or carbon dioxide is forbidden for safety reasons. The energy transmission can be realized by the use of air-cooled heat exchangers (the energy stays in the room) or by a water-cooled heat exchanger (the energy does not heat up the laboratory, but more expensive since cooling water is needed). Refrigeration units generate more noise than vaporizing systems.

Temperature chamber with pneumatic grips (door opend)

Temperature chamber mounted on guide rails

Sliders for removing the chamber without removing the grips

Special testing machines and systems

These testing machines are developed according to the field of application in question in close cooperation with the customer. They are mainly based on the components of standard testing machines.

Examples of special testing machines for textile applications

Materials testing machine in horizontal position for hill climbing ropes, test loads up to 100 kN and a test travel up to 3.7 m, with optical extensometer

Materials testing machine Zwick Z010 with unit for the determination of the unrolling resistance of medical bandages.

Materials testing machine in horizontal position for conveyor belts, test loads up to 2,500 kN, test travel up to 1.5 m, gripping length up to 10 m

ZMART – Zwick Modernization and Retrofit Technology

Modernization packages

With the two modernization lines ZMART.KIT(and ZMART.PRO) both electromechanical and hydraulic materials testing machines of different manufacturers can be upgraded and brought to the most recent state-of-the-art.

A modernization guarantees spare parts supply for modernized components, and makes available the most recent version of the test software *testXpert*[®], as well as the entire accessory program of extensometers and specimen grips.

The decision whether to purchase a new machine or a modernization depends primarily on the value and technical condition of the machine components to be taken over. Due to the fact that in addition to the load frame other components can

Fully automatic materials testing system with circulating specimen magazine for up to 200 strip-shaped specimens

Modernization of an electro mechanical materials testing machine with ZMART.PRO *testControl*-M

also be used furthermore, as e.g.: load cell and extensometer, the costs for a modernization remain relatively low compared to the costs incurred for the purchase of a new machine.

The modernization packages are composed of the following components:

- Digital measurement and control electronics
- Test software testXpert[®]
- Maintenance-free AC-drives
- Proportional valves or servovalves and hydraulic units for hydraulic testing machines

Special features or services	ZMART.KIT		ZMART.P	RO		
		tes	stControl®-	Allroun	d (DU	PS)
		М	Н	М	Н	I
Connection to						
 Electro-mechanical testing machines 	•	•	-	•	-	-
 Quasi-static hydraulic testing machines 	-	-	•	-	•	•
 Can also be used without Personal Computer (PC) 	•	•	•	-	-	-
 Up to 3 hydraulic testing machines 	-	-	-	-	•	-
Test data acquisition and display						
 test force and crosshead or piston travel resp. 	•	•	•	•	•	•
Further connection of						
 Analog extensometers (inductive) 	-	•	•	•	•	•
 Analog extensometers (strain gauge system) 	-	•	•	•	•	•
Incremental extensometers	-	•	•	•	•	•
 Several load cells (Changeover via testXpert[®]) 	-	•	•	•	•	•
Test data storage and processing						
 Display of max. force and travel when reaching 	•	•	•	-	-	-
the test end criteria (without PC)						
 Optional display of test force or stress, travel 	•	•	•	•	•	•
and/or deformation or strain (only with PC)						
• Output of XY-curves with the coordinates force/stress,	•	•	•	•	•	•
travel and /or deformation/strain or test time (only with PC)						
• Automatic determination and documentation of materials	•	•	•	•	•	•
characteristics data and statistical data (only with PC)						
Test sequence control and test speed control						
• Automatic recognition of the test end (specimen break, force	;-,●	•	•	•	•	-
travel- or time-limit value or number of test cycles reached)						
• Automatic stop at test end or return to start position	•	•	•	•	•	-
• Automatic speed changes according to the test program	•	•	•	•	•	-
(only with PC)						
• Test speed control in dependence on the measured force or	•	•	•	•	•	-
deformation ("closed loop" control (only with PC and						
optional program)						
Monitoring of satety limit values						
Test force	•	•	•	•	•	-
Crosshead resp. piston travel	•	•	•	•	•	-

Services

Customer satisfaction is given top priority at Zwick/Roell. Therefore, nearly one third of the employees are active in the service field. Extensive services guarantee the best use possible and a high availability of the supplied testing machines and -systems.

Advice and support

Our technically competent and experienced service personnel support the user directly at site or by phone, fax or e-mail. Detailed information may also be looked up in the internet or may be downloaded in case of need.

Maintenance and repair

A service contract with individually agreed service intervals for a careful and thorough maintenance and calibration guarantees the correct and trouble-free operation of the supplied testing machines and systems. Whereby it is not important which manufacturer supplied the testing machine. In case of a malfunction, a service-engineer or - technician is quickly available at site. Modern auxiliary means such as a telediagnostic service via modem allow a quick and exact fault localization at an early stage. Different reaction models guarantee the availability of a technician within the shortest period of time possible.

Calibration service according to ISO 9000

The Zwick/Roell maintenance- and calibration service is accredited as DKD¹⁾- and as UKAS²⁾-calibration laboratory resp. Thus, it is authorized to check the testing machines and -systems at the place of installation and to issue DKD- or UKAS calibration certificates for the measured quantities force, extension, energy and hardness. These calibration certificates are not only

recognized within the European Union, but also in almost every country of the world.

Particular advantage:

The technicians of the calibration service can, on the occasion of their service visit, not only service, adjust and calibrate the Zwick/Roell testing machines and systems, but also the machines and systems of other manufactures. This saves time and costs.

The regular maintenance and calibration of the testing machines is also a prerequisite for a quality management system according to QS-9000 and VDA 6.1.

Hotline – Quick assistance in case of malfunctions

For Zwick/Roell, the perfect functioning of the testing machine is very important. Should, in spite of the high quality standard, any malfunctions occur on the machine or within the software, then competent specialists are available on the free hotline.

Creation and adaptation of test programs

With the test software of the Zwick/ Roell Group already many different test programs can be acquired. The test requirements are however not always standardized. Experts will adapt your existing test programs individually or will create a new test program which is tailor-made to comply with your requirements.

Seminars

Studies have shown that more than half of the problems with technical systems are not caused by the technology itself, but rather by the user. A good training of the users helps to avoid troubles and, as a result, to reduce the costs.

The Zwick/Roell seminars inform

about theory and practice of the materials- and component part testing, the evaluation and the valuation of the test data, test results and the operation and maintenance of the testing devices. These seminars either take place directly at the user's place or at the locations of Zwick/Roell companies or representations.

Support line – Assistance for operation and application

Alternatively to the visit of a seminar or to the service visit of a technician at site, you can talk to our experts on the support line – against charge – whenever you have any questions. They will assist you with the adaptation of the test software, with the creation of test programs, when having questions regarding the operation of the software or the machine and they will give you an application-specific support.

Spare parts

Standard components are mostly available on stock and will be sent to you by courier service on the day of order. Special components, not being carried on stock, will be manufactured "just in time" by means of the latest production technology.

1) DKD=	Deutscher Kalibrier-Dienst
	(German Calibration Service)
2) UKAS =	United Kingdom
	Accreditation Service